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The absolute instability of a plane front of a laminary flame was proved by Landau [l and 
23 on the assumption that the Reynolds number, defined with reepect to the perturbation 
wave length, was inffnitely large. This assumption made it possible for him, when analys- 
ing stability, to utilize the equations of a perfect fluid and to consider the flame front as 
an infinitely thin hydrodynsmic discontinuity propagating in relation to the gas with a 
known constant velocity normal to its front. 

This work deals with the determination of the next approximation to Landau’s problem 
with respect to a small parameter reciprocal to the Reynolds number. In this approximation 
and with the assumption that the Reynolds number is large, but not infinitely large, it is 
necessary to take into account the transport phenomena (viscosity, diffusion and heat 
conductivity), because these affect the flame stability by altering the field of gas flow 
outside the flame zone, and determine the flame structure itself. The changes in the 
rate of chemical reaction within the flame must also be taken into account, as these 
affect the flame propagation velocity relative to the combustive mixture, 

The results obtained for a simple thermal mechanism of flame propagation permit the 
determination of the critical wavelength of perturbations, and of the critical Reynolds 
number at which a laminar flame is stable. The latter depends on the degree of thermal 
expansion of the burning gas, on the Prandtl and Lewis numbers, and on the dimensionless 
energy of activation of the chemical reaction. 

We would point out that the analysis of the influence of the stab&sing factors on a 
laminar flame, as given in 13 to 91, suffers from substantial defects. Authors of 13, 4 and 6] 
have shown a lack of uaderst~di~g of the asymptotic character of the Landau’s theory of 
stability, and that led to inconsistencies in the computation of corrections of flame per- 
turbations at finite Reynolds numbers. This remark refers in particular to the derivation 
of boundary conditions at the flame surface. fn none of the quoted works was the finite 
thickness of the flame front taken into account. This was due to the lack hitherto of a 
mathematical device for dealing with iterative computation of corrections to solutions 
possessing discontinuities at zero-order approximations. Only recently have Germain and 
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Guiraud suggested in their work on slightly curved shock waves [IO to 121 a method of 

iterative computation of corrections of a given order in boundary conditions on the hydro- 

dynamic discontinuities. This method is used here for the flame-front analysis. 

Furthermore, attempts made in the published works dealt only with some of the factors 

affecting stability, while ignoring others of the same order of magnitude (for example, in 

[3, 6 and 71 d’ff 1 usion and thermal conductivity were taken into account, but not viscosity, 

and vice-versa in [5]). We would stress that in the method of successive approach 
to this problem it is necessary to consider jointly the following factors which are of the 
same order of magnitude, namely E = 1 / N,, (here (NR = u, / kv is the Reynolds 

number, U, is the flame propagation velocity, k is the wave perturbation number, and v the 
viscosity). These factors are: (1) effect of the curvature of the flame front on the pro- 

cesses of diffusion, heat conductivity and viscosity within the flame front itself; (2) the 

effect of temperature perturbation on the rate of combustion (rate of chemical reaction in 

the flame) ; (3) the effect of the finite width (thickness) of the flame front ; (4) the effect 

of temperature perturbations on density changes upstream of the flame front; (5) the effect 

of viscosity on the motion of gas outside the flame front. All these effects are taken into 

consideration in the present work. 

The system of notations used in this work is as follows: Superscripts Oand t refer 

respectively to the zero-, and first-order approximations with respect to e. The eubscripts 

(-) and (+) denote the solutions applicable in the zone of the combustible mixture, and the 

zone of products of combustion respectively. During the linearisation, the parameters 
describing the stationary unperturbed solution are denoted by capitals, and those pertain- 

ing to corresponding perturbations, by italics with primes. Thus, for the unperturbed state 

U denotes the velocity, R the density, P the pressure, 6 the dimensionless temperature, 

and S the concentration while u’, p’, p’. O’, and s ‘represent the corresponding perturbations. 

Italics without primes denote full values of relevant parameters (p = R + p’). Other 

notations will be defined in the following text. 

1. We shall derive corrections of the order of l/NR to the Landau’s solution by the 

method suggested by Germain and Gnirand in [IO to 121 for the assessment of transport 

processes in slightly curved shock waves. 

According to this method it is necessary to distinguish two areas of gas flow, one 

outside the flame zone proper, the other within it (streamlines of a gas flowing through 
a curved front of a laminar flame are shown on fig. 1). In the external area of flow the 
gradients of parameters are small (if these parameters are dimensionally related to the 
perturbation wavelength and the normal velocity of flame propagation, then these gradients 

are * l), and the usual iterative methods can be applied. In other words, such parameters 

can be presented in the form 

f=P+tP (1.1) 

where f” is the solution in the zeroorder approximation (Landau’s solution), and f’ is the 

correction which is found from the relevant formulas, by substituting expressions of the 

form of (1.1) into them. 

The iteration method is not applicable to the internal region of the flame the width 

of which is of the order of e = i / N,, since it is also affected by transport phenomena. 

The parameter gradients am large, viz. - 1 / 8. 

However, snob transport processes can be aaseased for this region, if its narrowness 
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compared to the dimensions of the region of perturbed flow outside it, is taken into account. 

For this purpose it will be necessary to formulate boundary conditions for the solutions in 
the external zones, which would take into consideration the structure and the width of the 
flame front, i.e. which would present the influence of the inner zone effects in an integrated 

form. At the same time, the boundary conditions at the flame surface will, in general, be 

expressed by 

where [f*] is the parametric discontinuity at the flame front corresponding to the zero-order 

approximation to the solution of this problem, and [f’] and AIf’] are the corrections related 

to the transport processes and to the finite width of the flame-front. 

Having established the relationship between the solutions for the cold gas zone and 

the the zone of combustion products of the form of (1.1) by means of the boundary condi- 

tions (1.2), we can equate the coefficients of the zero-, and first-power of e, to obtain 

two systems of homogeneous linear algebraic equations. The first (zero-order approximation) 

is the Landau solution which will be used for deriving the characteristic frequency of 

Landau’s theory and for correlating the amplitudes of pressure and velocity perturbation 

on both sides of the flame zone, with the amplitude of the perturbation of the flame front 

itself. The second system (first-order approximation makes possible the determination of 

the amplitudes of the first-order approximation in terms of the amplitnds of perturbation 

of the flame surface, and the determination of the change of the characteristic frequency 

of the problem. Obviously, in the first approximation solution, the variation of the character 

istic frequency should be of the type 

(1.3) 

Here w is the dimensionless characteristic frequency, w” is the zero-order approxima- 

tion of the characteristic frequency, T-is the first-order correction, CL is the ratio of the 

densitiea of the hot and cold gases, (J is the Prandtl number, L is the ratio of thermal 

conductivity of the gas to the coefficient of diffusion of the burning gas (the Lewis 

number), I is the dimensionless energy of activation which determines the dependence of 

the rate of chemical reaction in the flame in temperature, E is the activation energy, and 

Tb is the temperature of combustion products. It is assumed that the mechanism of flame 

propagation is thermal, sach snd that the rate of reaction depends on the combustible 

component only. 

The problem is thus raduced to determination of the function 7 (CT, L, O, z). 

Strictly speaking, solution of the frequency problem (1.3) will only indicate the trend 

of the change of the natural frequency of perturbation at finite Reynolds numbers. In order 

to change the sign of the frequency, it is necessary to extrapolate the expression (1.3) 

to such wavelengths of perturbation for which ez (a, L, a, 2) - i (in this case ~repres- 

ents the critical Reynolds number). 

We note that the same eqnations of conservation of maas, reactant, energy and 
momentum can be used for both the iteration in the area outside the flame zone, and for 
the derivation of boundary conditions at the flame front. Landau had used in his work the 
equations of conservation of mass and momentum only. This is because in the case of the 
zero-order approximation to the solution of flame stability, the equations of reactant and 
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energy conservation are reduced to trivial equations of temperature and reactant transfer 

by the stream of gas; the solutions of such equations derived for perturbations of the 

reactant concentration are identically equal to zero. 

Such equations may, therefore, be omitted from further considerations. At the flame 

boundary there remains only an insignificant term of the equation of reactant conservation, 

viz. the condition for the normal flame velocity to be constant (which is in fact the condi- 

tion of a constant rate of consumption of the reactant by the chemical reaction). In the 

next following approximation to the solution of the flame stability problem it will be ne- 

cessary to take into consideration the transfer of energy, matter and momentum by means 

of thermal conductivity, diffusion and viscosity. Here, the equations of energy and reactant 

conservation will not lead to trivial solutions, and must be taken into account. 

2. The fundamental equations of this probIem are the equations of conservation of 

mass, momentum, energy, and reactant. 

(2.2) 

ae ae ae 
Pat+Pua,+Pvay= X-To 

8 (““+&) ; ( 
e=------- 

as as as 
P,,+Pu~+Pv~ =x &” 

Tb-To 

The following notations are used in these equations: x, y denote dimensionless plane 

coordinates (see fig. 1) related to the perturbation wavelength, or more precisely to 

iY 

i 

k= &-c/h, (k is the wave number), t is the dimension- 

,, -.. ._L 

--._ 

c- 

s 

less time defined by the ratio of actual time to the char- 

acteristic time l/u& u and u are the dimensionless 

components of velocity in units of normal flame propaga- 

tion velocity an, p is the dimensionless pressure (ratio 

of pressure to the dynamic pressure of the fresh mixtnre), 

p is the dimensionless density (relative to cold gas 

---l--T 

density), s is the relative concentration of the reactant, 

6 is the dimensionless temperature, To is the initial tem- 

FIG. I perature of the mixture, Tb is the temperature of products 

of combustion under the stationary conditions, and to is the dimensionless rate of the 

chemical reaction. It is also assumed that the thermal conductivity, dynamic viscosity, 

specific heat, and the product of the coefficient of diffusion and density remain constant, 

and independent of either temperature, or concentration. 

From the last of Equations (2.1) we can see, that the expression for the chemical 

reaction rate exibits the parameter E in a separate term. The reason for its appearance 

in the denominator becomes clear from the following considerations. From the general 

considerations of the theory of dimensional analysis it follows that the normal velocity 

of flame propagation an is related to the thermal conductivity of the gas x and to the 

chemical reaction rate W (T, s) by the expression U, -(xW)‘/~, or is equivalent 
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11. - u, z 1 H. By dimensioning this relationship with respect to the normal flame velocity 

and the perturbation wave number, we arrive at the form utilised in (2.1). This form clearly 

reflects the obvious fact, that with E tending to zero, the heat generation rate must become 

a &function related to an infinitely thin flame front. 

Equations (2.1) must be supplemented by equations of state of the gas which, in the 

case of an incompressible gas (flame velocity small compared with the velocity of sound), 

is reduced to the relation between the density of the gas and its temperature 

p=l 
/( 

i+ *se) (2.2) 

The analysis of stability will be carried out by the method of small perturbations, 

and the solution of Equations (2.1) will be sought in the form 

f = F + f’ = F (z) + ff” (4 + eP (41 exp W + 4 (2.3) 

We shall substitute solutions of the form of (2.3) into our equations and retain the 

terms of the order of 8. Eliminating the common factor exp (iy + u!) we obtain 

IiwuO+8~~~~+~+8~=-~-8~te(~~-E60)f 

+ -$(E +ivo) 

OR (00 + 8ey + -& (eo + eel) = & [~ (U” + 824 f i (V” + 8293 

Roe”+8Roei+~~$e~~=~(~--8’) 

(2.41 

We have eliminated the factor f3’ -f- EP 1 from the continuity equation by means of 

the expression (2.2). Also, terms w / 8 have been omitted from the last equations, since 

outside the flame the rate of reaction is zero. 

In order to solve the above equations with zero-order approximation with respect to E 

(the Landau solution), we assume 8 = 0 and utilise the folIowing boundary conditions. 

u o,r _ 3 21 09 _ 3 P_o’1, 8 _OF1, s_oz1 -+ 0 when z + - 30 (cold gas) 

u o,t V+OJl, p+O’l, s+*,* - 0, I e+“*ll < 00 whenz 4 + 00 (combustion products) 
(2.5) 

* , 

For the cold gas zone (Z < 0) we have 

u_* = AOer, v_O = iA”ex, p_O = - A0 (a + 1) e” 

8-0 = s_o = p-0 = f-j (A0 - is a constant of integration) 
(2.61 

To find the terms of the order of E we must equate the coefficients of 8 in Equations 

(2.4) and substitute the expressions derived for the zero-order approximations into them. 

This gives for the cold gas zone the following equations for U-I, v,‘, p-1, 0-1, and s-1 
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f+ (@&I + %C?) = C?$ + iv-l, 00-1 + F = 0, OS_’ + C$ = 0 
(2.7) 

The solution of these equations with boundary conditions (2.5) is identical to that of 

the zero-approximation (2.61, except for the new constant of integration A I. 

It follows that even in the first order approximation with respect to a the perturba- 
tions of temperature, concentration and density in the cold gas zone are absent. The trans- 

fer of the reactant and of heat energy is effected by convection only, while the proceases 
of diffusion and thermal conductivity become substantial in the second-order approxima- 

tion. 

The solution of Equations (2.4) of the gas flow downstream of the flame front (x > 01, 

fin the region of hot combustion products) yields the foilowing results 

UP 
= Bee-” + Coe-aU, v+o = - iBoe’” ..- ia@Coe’a~x 

P+O = B” (a0 - 1) e-%, 8 +O = liOe-eox, p+O = - a (1 - a) 0 +O (2.8) 

so=0 + (B*, Co, Ho - are the constants of integration) 

We draw the attention to the following circumstances. The flow of gas downstream of 
the flame front is turbulent (as opposed to the flow upstream of it), vortices form on the 

flame surface and are then carried away by the gas stream (in the expressions for the velocity 

components the terms with the constant Co correspond to the turbulent motion of gas). 
Furthermore, temperature and related density perturbations downstream of the flame front 

may be caused by temperature perturbations originating at the flame front and transferred 
by convection. 

In the first-order approximation equations of the hot gas zone have the form 

&4+l aou+f + -r& = - fg + [ (am)a - 11 toe-aox 
av+1 awv,’ + -7&- = - ip,’ + icm [ 1 - (aa)‘] C”ebe 

(2.9) 

p+’ = - a (1 - a) 8 +I, s’==O + 
the solutions of which are 

kX = B1e-r + C1e-am + [(cm)* - 1 J C”zeZe-am 

v+l = - iB1emr - iaoC1e-aw - i 11 - (cm)“] (I - aos) C”e-aa 

P+” = B1 (ao - 1) eer, p+l = - a (1 - a) 0,l (2.10) 

$+I = H1e-aor + $ [(ato)2 - 1 J H”xe:e-aw” 

Here 3 r, C t and H ’ are new constants of integration. These equations contain terms 

representing the transfer of heat energy by conduction, as well as the effect of viscosity 

downstream of the flame front. 

Finally, we shall define the form of the curved flame front by 

5 = D exp (iy -tot) (2.11) 
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The computation of the constants of integration of these solutions is carried out with 

the aid of boundary conditions at the flame surface which correlate the solutions of the 

hot and cold gas zones. These boundary conditions must also be calculated in the first- 

order approximation with respect to 8. 

3. Conditions of conservation of the longitudinal and transverse components of 

impulse, mass, heat energy, and reactant concentration must be maintained at the flame 

surface (the two last conditions must take into account the heat generated by the flame 
and the consumptio_n of the reactant by it). Insofar as these conditions which ecpress 

the laws of.conser@ation appear in a differential form in Equations (2.1). the latter can 

also be uaed for the derivation of boundary conditions. 

We ehall illustrate the method of derivation of boundary conditions on the example 
of conservation of the longitudinal component of impulse. Let us rewrite the first of 
Equations (2.11 in the divergent form 

(3.1) 
apu a 
z =& 

[-p-PU’+e(+~~ - $%)I + 4 [-PplrV$S($$ $)] 

We shall integrate this equation with respect to x from l- 6 to c+ S (in the proximity 

of the flame surface). In order to include the whole of the flame structure in the limits of 

integration we select 6 > E. Applying the rules of differentiating under the integral sign 

with respect to a parameter, we obtain 

t-p 

j [-P~v;+B(~+~)] ~~-_c--Puo+B(~+ g)Cs 

i3.21 

NotaZns [ ]rJ are used here for denoting differences of the bracketed terms at the 

two aides of the flame. 

Expression (3.2) contains terms of three kinds. Firstly, we have the usual differ 

ences of the impulse stream along a moving curved surface 

(3.31 

Secondly, we have corrections of the order g, caused by the presaroe of a viscous 

impulse stream on the boundaries <- 8 and <+ 6 

(3.41 

These corrections are obtained by computing the relevant derivatives of solutions 

for the ideal gas (formulas (2.6) and (2.8). 

Thirdly, we have the following terms: 

a" s a 
at PU k (3.5) 

c--a 
-67 ‘T” [- PUV + 8 ($$ + $)j &! 

r%! 

Germain and Guiraud were the first to note [ 10 to 121 that these integrals also yield 

corrections of the order of 8, but to be able to compute them, we must know the flame 
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structure at the zero-order approximation with respect to E. 

We shall explain this in the manner given in [IO to 121. Any parameter f (density, 

velocity, temperature, etc.) discontinuous at s = 0, can be represented for the finite 

values of e in the form 

1=~If+~~-51Y1~~e~+f_~~-5,Y.t,e~l+~~f+(z-5.y,'.F)- 
(3.6) 

- f- (z- 5. y, 1, e)l CD (z$ , y, t, e) 
where Q, (-+ 00, y, t, 8) = f i. At some distance from the discontinuity where1 z - 1; j > E, 

function f must be congruent with the solutions in the discontinuity interval, i.e. with f+ 

for z - <> 0 and with f_ for z - [ < 0 (it is assumed here that f tends to f* exponetially ), 

This function also def$tes the structure of the discontinuity at /Is - 5 1% e, since by 

definition, e defines the width of the discontinuity. 

From this we see that the integration of f with respect to x outside the discontinuity 

zone will yield real values only for f+ and f_ while within the zone, the result of integra- 

tion may be expressed by ef*, where p is a certain effective value of parameter f within 

the discontinuity, and which depends on its structure. For the computation of f* Germain and 

Guiraud have suggested a method simiIar to the concept of the thickness of displacement 

of the boundary layer theory. In accordance with this method we shal1 express the function 

f in the form of f, + f - f,, where for x - [> 0 we have fe = f+, and for z - << 0, fe = f_. 

Then 
US ii8 

1 fd+= 1 i,dz+.&/-@Jx (3.7) 
t-a Ld r-s 

The first of these integrals is always present in the formulation of boundary conditiona 

at an infinitesimally thin discontinuity. The integrand of the second integral differs from 

zero due to the discontinuity possessing a definite structure, In order to compute this 

integral we make the substitution E = (z - [) / a to obtain 

C-8 
Since outside the discontinuity f - fe tand~~~ponentia~~y to zero, and 6 > a, the 

limits of integration can be extended to from --m to + 00. Consequently 

f* = j” (f-i,fdE (3.9) 

The boundary condition (3.2) correlaz the parameters at x = [+ 6 and z = J- 8. 

In order to obtain the conditions at the surface of the discontinuity, we expand all the 

parameters into series in terms of 6, and take the first terms of expansions. 

Thus, the conditions of conservation of the flow of the longitudinal component of the 

impulse is expressed by 
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We obtain in a similar manner conditions of continuity of the flow of the lateral com- 

ponent of impulse, an d the condition of conservation of the mass flow. 

Equations of heat and reactant transfer can be dealt with in the same manner. Bound- 

ary conditions for these will contain the integral of the function of emission of heat 

M =J+=~urG (3.12) 

--03 

This integral represents the quantity of heat emitted per unit of time per unit of the 

flame surface. For stationary conditions M = 1, while in the case of a non-stationary 

curved flame front, parameter M defines the non-stationary rate of burning. Taking this 

into consideration the conditions of conservation of flow of heat and the reactant, will 

be expressed by 

(3.13) 
8; (PSI* - [p$+($$ = 

C 

as t+o 
= -puS+--$-~1, o-8$(~VS)*-[-PUS+~* ‘+‘%-M 

r- aL ay 1 t4 ay 

Linearizing the bonndary conditions (3.10) to (3.13) for the case of small perturbations 

we obtain 

[PI+ p’U2 + RU(2u'-$)]" = 

=E -A 
-I[ 
4 aii 2 au’ *u --- 
3as day, I - $ Vu’)* -; (p’U; - .$. (RUn’)*} 

C 
RUv’ - p ‘c +’ 4,=8{[g+gc- ~(Rv’)*+‘)*} 

[p’u+R(u’-$)]I=e{- -&p’)*-_!&Rv’)*} 

[Rue’ + p’U8 + R8 (d - $)I’” = 

= 8{[+ 3: - 4 (R(y)* 

-0 

- & (~‘e)* - -& (R&.9)*}+ M 
(3.14) 
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[RUs’ + p’US + RS (at - $)]‘” = 
-0 

- ; (p’s)* - $ (RSv’)*} - M' 

For further computation of the terms denoted by ( )* we shall have to use a definite 
form of flame structure. We shall assume that the latter is of the form given by the 

Zeldovich and Frank-Kamenetskii theory [ 13 and 141. This theory assumes that the activa- 
tion energy of the chemical combustion reaction is very great, and that the flame consists 
of two zones, viz. the preheating zone (its width is of the order of e f, and the comparatively 

much nsrrower chemical reaction zone. In accordance with this we shall disregqrd the width 

of the reaction zone, and assume that the reaction rate is determined only by the temper- 

ature of combustion products leaving tbis zone (M = M (8,)). Generally, the temperature @r 
may differ from the adiabatic temperature of combustion under stationary conditions 

(er 5 6 = 1) see for example [I5 and 161. Structure of the flame front is defined by the 
system of equations (2.1) which comprises the hydrodynamic, diffusion and thermal con- 

ductivity equations. In the case of s curved flame front curvilinear orthogonal coordinates 

originating at the flame front should be used, as the term ‘flame structure” means the 

parameter distribqtion within the flame front &the direction of the normal n to its surface. 
We then substitute ?j = n / e for n. After this substitution, and because for the compnta- 

tioa of the values of terms ( )* it is sufficient to know the flame structure in the zero-order 
approximation only, all terms of the order of (! can be disregarded. It is easy to see that 
because of thii all derivatives with respect to time and to the coordinate collinear with 

the flame front, will disappear. All Lsmi coefficients will be equal to unity. For flame 

fronts of small curvature, the direction of its normal will be collinear with the z-axis 
with the approximation to the higher order terms. We can, therefore, assume that 

rl = a / e = .k = (2~ .- 0 / 8. 

Then, from equations (2.1), we obtain for the area outside the chemical reaction zone 

%(- p-pun* + $ d$) = 0, & (- pfw+ + 2, = 0, g (p&J =05) 

a - -poRe++g) ==o, 
a!5 ( -&(-pv,s+-&-g) ==o 

where vz and-7 are the comporta& of the stream -velocity, normal and- tangent res- 

pectively to the flame front. These are related to velocities u and v by 

The system of equations (3.15) must be supplemented by the equation of state (2.2). 

Tha bonndary conditions for the system of equations (3.15) will be : (1) conditions, at 

infinity (for [+ f bo the solutions should coincide with the values of parameters at the 

flsme surface obtained by Landau (formulas (2.6) and (2.8) for x = 0)) ; (2) conditions in 
the reacti& zone. Here the conditions of continuity of the tangentle velocity, temperature 
and concentration must be fulfilled (conditions of conservation in this case will be ful- 
filled automatically). With the above boundary conditions and use of linearizing procedure, 

we obtain the solution of system (3.15) in the form 

(3.17) 
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p_~P_+i--cr(~~--l)e~~T P+=-P,--G 
a 

@_ = eat, @+ = I, S_ = 1 - e”LE, S, = 0 

R_=: i / (I+ +“E), R+=a 

for stationary conditions, end 

u_’ = A0 + v [(A0 
{ 

- ol)) (1 + og) -/- Ho] e”c 
l 

efg+ocf 8,’ = (Bo+ Co) I++~ 

v_‘=.i A@- 
t ( 

Ao$-B”+aoCo-- yp - LfZ &O&l &+@t 

V*I = - i (B” + a&Jo) eQ+& 

Pi = I - A* (0 + 1) + ‘5 (; Q - 1) [(A* - ODJ (2 + at) + HOI eon 
1 

ew+“: 

P+r = B” (UO - 1) e*v+cdf, p+’ = - a (3 - a) f&lU+d 
(3.18) 

p_’ = - f$ [(Ao - COD) 68 + Eib] (1+ y&)-‘&yr.: 

Q_’ = ([(A@ - @@,a5 + Ho] 6) e*W, Q,’ =e &@+~f 

s_’ n.-(AL. OD) i&&Fee*@+*, 
for the per~rbntions. 

s+’ = 0 

Using the IormnIae (3.17) and (3.18), we cm compute the values of the terms f I* 
appearing in the boondary conditions (3.141, with the following resaft 

i--at 4 
(p’)* = 7 -6_ (3 G - 1) (A0 - OD + Ho) e*u+af 

(P’) * = -$ [(A0 - cdl) In a + (1 - a) Ho] &+ut 

(Rs’)* = ~a~19(~,~)(Ao-oL))e*u+“f (z~(a,-,-$.,,lS~+,i 
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(Rl/v’)* = i[- (A0 + E” + awC”) + I$ (I - .$j .Dj eiu+ot _. 

which completes the derivation of the boundary conditions at the flame surface in the 

first-order approximation with respect to E . 

4. We shall now determine the .characteristic frequency of the problem. Having derived 

solutions of equations (2.6), (2.8) and (2.10) w re satisfy the boundary conditions (3.14), h’ h 

we shall now equate the coefficients of the zero - and first-order approximations with respect 

toe, to obtain two systems of homogeneous, linear algebraic equations. The first system 

obtained by equating to zero the coefficients of the terms of the zero power is used to de- 

termine the constants of the zero-order approximation 

A”(@- q+RO(ao+f)+2CO- 

-Ao-p - awP + .- ‘,“D=O 

-Ao+aBo+aCo+(l-a)oD-(l-cz)H"=O 

c&"+uCo-a~D+aHo=O, -A"+oD=O 

(4.1) 

it is easily seen that from the last three equations it follows that Ho 1~: 0. Thus, the 

solution of zero-order approximation does not contain terms related to temperatare perturba- 

tions downstream of the flame. This is underst~dabIe, as the phenomena which can cause 

temperature perturbations there, i.e. the diffusion and thermal conductivity, are neglected. 

Neglecting the fourth equation of (4.1) and assuming H * = 0, we arrive at tbe system 

of equations obtained by Landau (in a somewhat different combination of equations). In 

order to obtain a nontrivial solution, we equate the determinant of the system to zero, and 

arrive at Landau’s characteristic equation 

(wy+ & t-p - afJ-au) = 0 (no EE cd) 

We derive the expressions for the coefficients A*, B” and Co in terms of the perturba- 

tion amplitude of the surface D, with the assumption that in this system o = or*. We obtain 

A@ = o”D, BO= i-a D, 
l-a Co=(40- a(t+a))D 

(4.3) 

a($ -t-a) 
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Now we shall try to solve the problem in the first-order approximation. Equating 

coefficient of E, we obtain 

(0” - 1) A’ + (cm0 + 1) B’ + 2C’ - $ H’ = A’h”z + B”ctooz + { }1 (4.4.1) 

- A1 - B1 - ao°C1 = [I - cc& - (acoo)’ Co -I- { }1 (4.4.2) 

- A1 + c&t + aC1 - (1 - a) II1 = (1 - a) 0”ZD + { I3 (4.4.3) 

aB’ + aC’ + aH1 = - acoO%D f { I4 (4.4.4) 

- A’ = o”zD + { )L (4.4.5) 

A new notation was used in these equations : the right-hand side terms of the boundary 

condition (3.14) were denoted for brevity by E{ }k, where the lower index denotes the 

equation number. Also, the characteristic frequency of the problem was used in the form 

given by (1.3), (we also seek the first-order approximation with respect to 8 of the char- 

acteristic frequency of this problem). 

We note that H’ is easily found from the system (4.4). From (4.4.3), (4.4.4) and (4.4.5) 

we obtain 

H’ = -{ h + { J4 + { 1s (4.5) 

We.shall use the solution of zero-order approximation i.e. (4.3) for computing the 

right-hand sides of the system (4.4) in terms of the flame front perturbation amplitude. We 

obtain for the parameters ( )* 

(Jr’)* = (p’)* = (I@‘)* = (Rs’)* = (p’U) * = (p’ o)* = (p’s)* = 0 

(Ru’)* = 00 y Deiutd, (.Rv’)* = i (a0 + 1) ‘F L)eiU+o’ 

(f(Uo’)* = _ i e d Deiut ml 
(4.6) 

(REV’)* = d [(o” f 1) III u - &a $ I2 (CL, $) + & I, (a, &)] D&+ot 

(K&T’)* = - i [I + a y:k ‘1 ln a] L)eiu+wl 

and with the use of (4.6) for the right-hand sides of system (4.4) we have 

{ }1=-[(2+~)~+~114D 

{ }z + [I - (aoo)y co = - O” ‘“p, + I) Din Q, { )3=f$Dlna 
(4.7) 

{ Id=-;[I +~&(co”+l)lna]D+zH’ 

{ b= ~[(~“+l)~n~-~~r,(u, ~)+&I,(a,L&)]D-~H’ l-a L 

while for H’ we have 
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Ii’ = - ; { [ fa + us [ ID) D := - fiJ, (4.8) 

where for brevity we use the following notation 
(4.9) 

1 Ia= 1 +i&lna-L+J2(a,&)], I lb=[+13(ch+)+ha] [ 
and utilise the dependence of the reaction rate on temperature, which is 

M’ = ~0 p’ zzz EZIP exp (iy + 0 t) 

(The terms within the parentheses [ 1, 6 become zero for the Lewis number t = I). 
t 

We rearrange our equations so as to present them in a form similar to that of the 

Landau system [I and 21. For this we have to perform the following operations 

- G(4.4.1) +29(4.4.5), -(4.4.2), ;(4.4.3)-+(4.4.5), -(4.4.5) 

The numbers in parentheses correspond to the equations of the system (4.4). Equa- 

tion (4.4.4) is omitted, since it was used to obtain Hr. We have 

(00+1)A’+(aoO--)~‘+{t[oO- u;i;uu,]++y2 --;‘,-I_ 

+ NW --+a --~(L222)xjD=o 

Here, as in the case of the solution of zero-order approximation, the determinant of 

system (4.10) must be zero, for a nontrivial solution to exist. This provides the condition 

for the determination of correction of the characteristic frequency T of our problem. 

We find 

I’-- al 

(4.11) 

If (4.11) is extrapolated into the region of wavelengths perturbation for which o = 0, 

then the parameter 7 becomes equal to the critical Reynolds number, r=: NRo, taken with 

respect to the perturbation wavelength, or more precisely with respect to the wave number 

k = 277/h. 

5. Formula (4.11) derived in the previous section shows the influence of individual 

dissipative effects on the flame stability. 

The first term of this formula represents the effect of viscosity. 

Using for Sz o the expression 
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~“=(-u~fu+a2-u3)/(1j-a) (5.1) 

it is easy to prove (see (4.2)) that this term is always positive, therefore, viscosity 

has always a stabilising effect on the flame. This is in agreement with conclusions arrived 

at in [5 and 61, but contradicts those of [4 and 81 in which a physically odd, unstabilising 

effect of viscosity is shown. The critical Reynolds number, aa determined by viscosity 

effects, is 
NRi = (1 - a) / (1 - a - rn0) (5.2) 

and is not high. The dependence of NR t on u is shown in Fig. 2. For real flames U. = 0.1 

to 0.2, and NR1 = 1.3 to 1.5. 

The second term of the formula (4.11) repreaants the effect of thermal conductivity. 

The critical Peclet number corresponding to this effect only ia 

ITa = aNI& = - ~~+_~~z~ (9 -+ Ea) (5.3) 

The dependence of & on u is also shown on the fig. 2. Thermal conductivity has 

also only a stabilising effect on the flame. For the real flames the Peclet number is 

r&=3. 

The last term of the formula (4.11) represent the effect of the relationship between 

diffusion and thermal conductivity on the frame stability. The critical Peclet number due 

to this effect is 

It is dependant on two parameters, via. the degree of thermal expansion u and the 

Lewis number L, and in this manner correlates the effects of diffusion and thermal con- 
ductivity. 

It should be emphasised, however, that here the role of the Lewis number L is aome- 
what different than in the case of pureIy diffusive-thermal stability [I5 and 161. In the 

latter, stability is dependent on the redis~ibution of heat and matter between the hilla and 
dales of the flame front by means of transverse thermal diffusion and conduction flows, 
originating et the flame curvatures. In our case the transverse, flow of heat and matter is 
convective; we analyae the flame front in the vicinity of the boundary layer, diffusion and 
thermal conductivity are considered in the direction normal to the front only (as qnaai- 



stationary changes of the concentration and temperature profiles), while the tangential 

transfer of heat and matter along the front is brought about by the oscillations of the 

tangential velocity. Therefore the diffusive thermal phenomena, in the sense given in [ 15 

and 161, would only appear in the second-order approximation with respect to E of the 

Landau solution. The part which the Lewis number plays in our problem lies in the fact, 

that the width of the diffusion and thermal fronts differ from each other, hence, the effect- 

ive values of concentration and temperature, trasported by transverse pulsations, are also 

different. Fig. 1 shows how the streamlines become distorted, and how the y-components 

of velocity change their sign within the flame front. Depending on the degree of thermal 

expansion U, the transport phenomena may predominate either downstream, or upstream 

of the flame front, and the resulting effect will be different, even though relationship 

between the diffusion and thermal conductivity remains the same. 

This can be easily proved. The Peclet number for a --) 0 (considerable thermal 

expansion) is 

II, -+ (1-22) (L - 1) /L 52 -22 (L - 1) /L 

while for U. + 1 (no thermal expansion), we have 

(5.5) 

IIa -+ --2(1 - z)(L - 1)/L (L + 1) 25 22(L - i)/L(L + I) (5.6) 

from which we see that sign of L - 1 remains the same, when the sign of the Peclet number 

changes. 

If the Lewis number is close to unity, then IL - 11 <( 1, and (5.4) can be replaced 
with the simpter equation 

I-I ~~-222 * ‘ypo [l - - 
s II (a)1 (L - 1) = - 2zG (a) (L - 1) (5.7) 

Function C (CL) is shown on fig. 2. It becomes negative for very small U, but this does 

not occur in practice. 

In the general case formula (5.4) should be used. In order to facilitate computations 

with the aid of this formula curves of [a / (1 - a)] ],(a, m) for several valoes of the 

parameter m are given on fig. 3. 

Thus, the effect of transport phenomena is that of stabilising small perturbations. The 

critical Reynolds number T obtained by the extrapolation of the linear correction does not 

greatly differ from unity. For example, for Q, = 0.2, I = 10, cr = 1, and f, = 1.2, we have 

7= 7. 

In concluding we wish to express out thanks to G.I. Bareblatt and 1a.B. Zel’dovich 

for the formulation of the problem and its discussion and to 0.1. Leipunovski and 

V.I. Iagodkin for their valuable remarks 
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