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The absolute instability of a plane front of a laminary flame was proved by Landau [1 and
2] on the assumption that the Reynolds number, defined with respect to the perturbation
wave length, was infinitely large. This assumption made it possible for him, when analys-
ing stability, to utilize the equations of a perfect fluid and to consider the flame front as
an infinitely thin hydrodynamic discontinuity propagating in relation to the gas with a
known constant velocity normal to its front.

This work deals with the determination of the next approximation to Landau’s problem
with respect to a small parameter reciprocal to the Reynolds number. In this approximation
and with the assumption that the Reynolds number is large, but not infinitely large, it is
necessary to take into account the transport phenomena {viscosity, diffusion and heat
conductivity), because these affect the flame stability by altering the field of gas flow
outside the flame zone, and determine the flame structure itself. The changes in the
rate of chemical reaction within the flame must also be taken into account, as these
affect the flame propagation velocity relative to the combustive mixture.

The results obtained for a simple thermal mechanism of flame propagation permit the
determination of the critical wavelength of perturbations, and of the critical Reynolds
number at which a laminar flame is stable. The latter depends on the degree of thermal
expansion of the buming gas, on the Prandt} and Lewis numbers, and on the dimensionless
energy of activation of the chemical reaction.

We would point out that the analysis of the influence of the stabilising factors on a
laminar flame, as given in [3 to 9], suffers from substantial defects. Authors of [3, 4 and 6]
have shown a lack of understanding of the asymptotic character of the Landau’s theory of
stability, and that led to inconsistencies in the computation of corrections of flame per~
turbations at finite Reynolds numbers. This remark refers in particular to the derivation
of boundary conditions at the flame surface. In none of the quoted works was the finite
thickness of the flame front taken into account. This was due to the lack hitherto of a
mathematical device for dealing with iterative computation of corrections to solutions
possesasing discontinuities at zero-order approximations. Only recently have Germain and
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Guiraud suggested in their work on slightly curved shock waves [10 to 12} a method of
iterative computation of corrections of a given order in boundary conditions on the hydro-
dynamic discontinuities. This method is used here for the flame-front analysis.

Furthermore, attempts made in the published works dealt only with some of the factors
affecting stability, while ignoring others of the same order of magnitude (for example, in
[3, 6 and 7] diffusion and thermal conductivity were taken into account, but not viscosity,
and vice-versa in [5]). We would stress that in the method of successive approach
to this problem it is necessary to consider jointly the following factors which are of the
same order of magnitude, namely ¢ = 1 / Ny, (here (Nz = u,/ kv is the Reynolds
number, u, is the flame propagation velocity, & is the wave perturbation number, and v the
viscosity). These factors are: (1) effect of the curvature of the flame front on the pro-
cesses of diffusion, heat conductivity and viscosity within the flame front itself; (2) the
effect of temperature perturbation on the rate of combustion (rate of chemical reaction in
the flame) ; (3) the effect of the finite width (thickness) of the flame front; (4) the effect
of temperature perturbations on density changes upstream of the flame front; (5) the effect
of viscosity on the motion of gas outside the flame front. All these effects are taken into
consideration in the present work.

The system of notations used in this work is as follows: Superscripts © and ! refer
respectively to the zero-, and first-order approximations with respect to €. The subscripts
(=) and (+) denote the solutions applicable in the zone of the combustible mixture, and the
zone of products of combustion respectively. During the linearisation, the parameters
describing the stationary unperturbed solution are denoted by capitals, and those pertain-
ing to corresponding perturbations, by italics with primes. Thus, for the unperturbed state
U denotes the velocity, R the density, P the pressure, @ the dimensionless temperature,
and S the concentration while ', p’, p’, 0, and s “represent the corresponding perturbations.
Italics without primes denote full values of relevant parameters (p=<UR 4 p’). Other
notations will be defined in the following text.

1. We shall derive corrections of the order of 1/N R to the Landau’s solution by the
method suggested by Germain and Guiraud in [10 to 12] for the assessment of transport

processes in slightly curved shock waves.

According to this method it is necessary to distinguish two areas of gas flow, one
outside the flame zone proper, the other within it (streamlines of a gas flowing through
a curved front of a laminar flame are shown on fig. 1). In the external area of flow the
gradients of parameters are small (if these parameters are dimensionally related to the
perturbation wavelength and the normal velocity of flame propagation, then these gradients
are ~ 1), and the usual iterative methods can be applied. In other words, such parameters
can be presented in the form

f=1Ff+epn (1.1)

where f° is the solution in the zero~order approximation (Landau’s solution), and f? is the
correction which is found from the relevant formulas, by substituting expressions of the
form of (1.1) into them.

The iteration method is not applicable to the internal region of the flame the width
of which is of the order of &2 =1/ Np, since it is also affected by transport phenomena.
The parameter gradients are large, viz. ~ 1 / .

However, such transport processes can be assessed for this region, if its narrowness
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compared to the dimensions of the region of perturbed flow outside it, is taken into account.
For this purpose it will be necessary to formulate boundary conditions for the solutions in
the external zones, which would take into consideration the structure and the width of the
flame fromt, i.e. which would present the influence of the inner zone effects in an integrated
form. At the same time, the boundary conditions at the flame surface will, in general, be
expressed by

[P1+ & (] = eA () .2)

where [f°] is the parametric discontinuity at the flame front corresponding to the zero-order
approximation to the solution of this problem, and {f] and A[f°] are the cormrections related
to the transport processes and to the finite width of the flame-front.

Having established the relationship between the solutions for the cold gas zone and
the the zone of combustion products of the form of {1.1) by means of the boundary condi-
tions (1.2), we can equate the coefficients of the zero-, and first-power of e, to obtain
two systems of homogeneous linear algebraic equations. The first (zero-order approximation)
is the Landau solution which will be used for deriving the characteristic frequency of
Landau’s theory and for correlating the amplitudes of pressure and velocity perturbation
on both sides of the flame zone, with the amplitude of the perturbation of the flame ftont
itself. The second system (firsteorder approximation) makes possible the determination of
the amplitudes of the first-order approximation in terms of the amplitude of perturbation
of the flame surface, and the determination of the change of the characteristic frequency
of the problem, Obviously, in the first approximation solution, the variation of the character-
istic frequency should be of the type

o =l —ev (oL, q, 3)] (2=E[2R,T}) (1.3

Here @ is the dimensionless characteristic frequency, @ is the zero-order approxima-
tion of the characteristic frequency, Tis the first-order correction, & is the ratio of the
densities of the hot and cold gases, o is the Prandtl number, L is the ratio of thermal
conductivity of the gas to the coefficient of diffusion of the buming gas {the Lewis
number), z is the dimensionless energy of activation which determines the dependence of
the rate of chemical reaction in the flame in temperature, £ is the activation energy, and
Ty is the temperature of combustion products. It is assumed that the mechanism of flame
propagation is thermal, such and that the rate of reaction depends on the combustible
component only.

The problem is thus reduced to determination of the function 7 (o, L, q, 2).

Strictly speaking, solution of the frequency problem (1.3} will only indicate the trend
of the change of the natural frequency of perturbation at finite Reynolds numbers. In order
to change the sign of the frequency, it is necessary to extrapolate the expression (1.3)
to such wavelengths of perturbation for which ev (6, L, a, z) ~ 1 (in this case T repres-
ents the critical Reynolds number),

We note that the same equations of conservation of mass, reactant, energy and
momentum can be used for both the iteration in the area outside the flame zone, and for
the derivation of boundary conditions at the flame front. Landau had used in his work the
equations of conservation of mass and momentum only. This is hecause in the case of the
zero-order approximation to the solution of flame stability, the equations of reactant and
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energy conservation are reduced to trivial equations of temperature and reactant transfer
by the stream of gas; the solutions of such equations derived for perturbations of the
reactant concentration are identically equal to zero.

Such equations may, therefore, be omitted from further considerations. At the flame
boundary there remains only an insignificant term of the equation of reactant conservation,
viz. the condition for the normal flame velocity to be constant {which is in fact the condi-
tion of a constant rate of consumption of the reactant by the chemical reaction). In the
next following approximation to the solution of the flame stability problem it will be ne-
cessary to take into consideration the transfer of energy, matter and momentum by means
of thermal conductivity, diffusion and viscosity. Here, the equations of energy and reactant
conservation will not lead to trivial solutions, and must be taken into account.

2, The fundamental equations of this problem are the equations of conservation of
mass, momentum, energy, and reactant.

p o touGe tor = By (T D)+ 5 (o o)
wrugtrg=—re(G %) 2.

rateg ey = sEeE T e

R Rt e T B

The following notations are used in these equations: x, y denote dimensionless plane
coordinates {see fig. 1) related to the perturbation wavelength, or more precisely to

iy k= 2n / A, (k& is the wave number), ¢ is the dimension-
R j less time defined by the ratio of actual time to the char-
e acteristic time l/unk, u and v are the dimensionless
components of velocity in units of normal flame propaga-
— tion velocity u,, p is the dimensionless pressure (ratio

of pressure to the dynamic pressure of the fresh mixture},
p is the dimensionless density (relative to cold gas
density), s is the relative concentration of the reactant,

! T @ is the dimensionless temperature, T, is the initial tem-
FIG. 1 perature of the mixture, T is the temperature of products
of combustion under the stationary conditions, and w is the dimensionless rate of the
chemical reaction. It is also assumed that the thermal conductivity, dynamic viscosity,
specific heat, and the product of the coefficient of diffusion and density remain constant,

and independent of either temperature, or concentration.

From the last of Equations (2.1) we can see, that the expression for the chemical
reaction rate exibits the parameter £ in a separate term. The reason for its appearance
in the denominator becomes clear from the following considerations. From the general
considerations of the theory of dimensional analysis it follows that the normal velocity
of flame propagation u, ig related to the thermal conductivity of the gas x and to the
chemical reaction rate W (T, s} by the expression u, ~— (k)2 or is equivalent
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IV~ u,?/ % By dimensioning this relationship with respect to the normal flame velocity
and the per!urbation wave number, we arrive at the form utilised in {2.1}. This form clearly

reflects the obvious fact, that with & tending to zero, the heat generation rate must become
a O-function related to an infinitely thin flame front

Equations (2.1) must be supplemented by equations of state of the gas which, in the
case of an incompressible gas (flame velocity small compared with the velocity of sound),
is reduced to the relation between the density of the gas and its temperature

p:i/(1+1:a8> (2.2)

The analysis of stability will be carried out by the method of small perturbations,
and the solution of Equations (2.1) will be sought in the form

f=F+f=F(x)+ [f(2)+ eft (z)] exp (iy +ol) (2.3)

We shall substitute solutions of the form of (2.3) into our equations and retain the

terms of the order of &. Eliminating the common factor exp (iy + ot) we obtain

Rou® + eRou? + + == %—— 55 ¢ (66:: u") +
e 6 Aud .
+ 55 (5 +10°)
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We have eliminated the factor p° -i- epl from the continuity equation by means of

the expression {2.2). Also, terms w / ¢ have been omitted from the last equations, since
outside the flame the rate of reaction is zero.

In order to solve the above equations with zero-order approximation with respect to &
(the Landan solution), we assume &€

= () and utilise the following boundary conditions.
u O, p Ol p & g %1

$%—> 0 when z -~
0,1 0,1 0,1 1)
u+’1v+’ap+’,3+’1 "0;

{cold gas)

(2.5
18,7 < oo whenz — 4- o0 (combustion products) )
For the cold gas zone (x <0) we have

u ® = A%", v %= id%", p'=—A%@ +1)¢

{A® — is a constant of integration) (2.6)
To find the terms of the order of £ we must equate the coefficients of & in Equations

(2.4) and subatitute the expressions derived for the zero-order approximations into them
This gives for the cold gas zone the following equations for 2!, v 1, p 1,91}

9_823_0:‘ p-():O

and s !
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du.} apt op 1
1 — __ 9p_ 1 (S .
Ut T T vl =—ip!
{f—a 1 au_l . 58 1 951 (2.7)
(0)9 + ).—-:—ax——f—w_‘, 08+ 5~ =0, os!+ = =0

The solution of these equations with boundary conditions (2.5) is identical to that of
the zero-approximation (2.6), except for the new constant of integration 41,

It follows that even in the first order approximation with respect to & the perturba-
tions of temperature, concentration and density in the cold gas zone are absent. The trans-
fer of the reactant and of heat energy is effected by convection only, while the processes
of diffusion and thermal conductivity become substantial in the second-order approxima-
tion.

The solution of Equations (2.4) of the gas flow downstream of the flame front (x> 0},
{in the region of hot combustion products) yields the following results

u,’ = B% ™ + (¢ o=, 2,0 = — iB%* — ijaw(l%swx
pl=B(aw —1)e* 0,°=H¢*, p%=—a(l—0)0, (28
=0 (B®, C° H° - are the constants of integration)

We draw the attention to the following circumstances. The flow of gas downstream of
the {lame front is turbulent {as opposed to the flow upstream of it), vortices form on the
flame surface and are then carried away by the gas stream (in the expressions for the velocity
components the terms with the constant C® correspond to the turbulent motion of gas).
Furthermore, temperature and related density perturbations downstream of the flame front
may be caused by temperature perturbations originating at the flame front and transferred
by convection.

In the first-order approximation equations of the hot gas zone have the form

aou, + = 8u+ ap+ + [(ow)* — 1] (2o

o, + 2 — _ip 1 ine [1 — (aw)t] oo
804‘

(2.9
i:a( 91+ )..__g_a;_;"_*_iv:’ aw,! + = %_[(m)a_,ﬂﬁoe-am
pl=—a(—ap)  si=0
the solutions of which are
u,! = Ble® + (Cle72* 4 [(aw)® — 1] COze e
v,! = — iB%* — igeCle™™* — i [1 — (aw)?] (1 — awz) Cl =
pl=B(aw —1)e”, pr=—a(l—0a)6,}
0,1 = Hlews + 1 [(ao)t — 1] Hoze-oo

(2.10)

Here B%, C* and H* are new constants of integration. These equations contain terms
representing the transfer of heat energy by conduction, as well as the effect of viscosity
downstream of the flame front.

Finally, we shall define the form of the curved flame front by

t =D exp (iy +ot) (2.1
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The computation of the constants of integration of these solutions is carried out with
the aid of boundary conditions at the flame surface which correlate the solutions of the
hot and cold gas zones. These boundary conditions must also be calculated in the first-
order approximation with respect to €.

3. Conditions of conservation of the longitudinal and transverse components of
impulse, mass, heat energy, and reactant concentration must be maintained at the flame
surface (the two last conditions must take into account the heat generated by the flame
and the consumption of the reactant by it). Insofar as these conditions which ecpress
the laws of.conservation appear in a differential form in Equations (2.1), the latter can
also bé used for the derivation of boundary conditions.

We shall illustrate the method of derivation of boundary conditions on the example
of conservation of the longitudinal component of impulse. Let us rewrite the first of
Equations (2.1) in the divergent form

(3.1
» 4 [ou ‘
Bomlor—mtels - S5+ g [ re(z 4 5)]
We shall integrate this equation with respect to x from { = 8to £+ 8 (in the proximity
of the flame surface). In order to include the whole of the flame structure in the limits of
integration we select § > €. Applying the rules of differentiating under the integral sign
with respect to a parameter, we obtain

42

P S g8 oL : 4 Ou 2 gp\-

—— udz — [pu);”, <> = | — p — put Tz T 3

o wsp [Pul 5+ [ p—p +"(3 9z T3 %‘J)]H"'
, 4o 3.2)

’ .y 0w , B - du |, oo\t o
+ 5 [_paa+g .._.-{__)—J dz_[_ uv -+ & | — __.)] 3
% ) ' (By o= p ('89' t s
Notations [ J$*2 are used here for denoting differences of the bracketed terms at the

two sides of the flame.

Expression (3.2) contains terms of three kinds. Firstly, we have the usual differ-
ences of the impulse stream along a moving curved surface

@
e —p— S, [~ % 3.3)

-3 dy
Secondly, we have corrections of the order g, caused by the presence of a viscous
impulse stream on the boundaries £~ 8 and {+ &

s 2= 2], e[l et 5.

ERCZIEIE T Oy T W oy

These corrections are obtained by computing the relevant derivatives of solutions
for the ideal gas (formulas (2.6) and (2.8).

Thirdly, we have the following terms:
3 t§5 2 {48
: du dr 7
20 | pudz, Y § [— puv + 8= + —=)idz (3.5)
s Yy s ( oy ox )J

Germain and Guiraud were the first to note [10 to 12] that these integrals also yield
corrections of the order of 8, but to be able to compute them, we must know the flame
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structure at the zero-order approximation with respect to .

We shall explain this in the manner given in [10 to 12]. Any parameter f (density,
velocity, temperature, etc.) discontinuous at € == 0, can be represented for the finite
values of ¢ in the form

1 1
f:—i-[,-}(x"_c' yvt»8)+f—(x'_"C'yvt'8)]+T[f+(x_€v Y, 2 8)"“

~fe—ty teno(E2F 4 )

where @ (+ o0, y, ¢, 8) = =t 1. At some distance from the discontinuity where| z — {|>> ¢,

(3.6)

function f must be congruent with the solutions in the discontinuity interval, i.e. with f+
for x — (>0 and with {_ for x — £ <0 (it is assumed here that f tends to f exponetially),
This function also defines the structure of the discontinuity at JJz — {|<C e, since by
definition, g defines the width of the discontinnity.

From this we see that the integration of f with respect to x outside the discontinuity
zone will yield real values only for f, and f_ while within the zone, the result of integra-
tion may be expressed by ef*, where f* is a certain effective value of parameter f within
the discontinuity, and which depends on its structure. For the computation of f* Germain and
Guiraud have suggested a method similar to the concept of the thickness of displacement
of the boundary layer theory. In accordance with this method we shall express the function
fin the form of f_ + f — f,, where for x — > 0 we have fe=f,,and forx — {<o, fe=f_»
Then

%+ L4+8 L+8
S fdz— S i de -t S (f—1,)dz 3.7
s = 25

The first of these integrals is always present in the formulation of boundary conditions
at an infinitesimally thin discontinuity. The integrand of the second integral differs from
zero due to the discontinuity possessing a definite structure. In order to compute this

integral we make the substitution § = (z — [) /& to obtain
L+3 5/¢

§i—tyas=e § (—rpa @8
-8 T
Since outside the discontinuity f — f,_ tends exponentially to zero, and 3 >> ¢, the

limits of integration can be extended to from —w to + 0. Consequently
fen

= 0—t0a (3.9)

—00
The boundary condition (3.2) correlates the parameters at x = {+8 and x =~ §,

In order to obtain the conditions at the surface of the discontinuity, we expand all the
parameters into series in terms of 8, and take the first terms of expansions.

Thus, the conditions of conservation of the flow of the longitudinal component of the
impulse is expreased by
4 du 2 dp T
g0 0F 2 2% —
(pu)* Pul: o2 _[—p—-pu +8(é e 3 3?1)}
3 A\ T o
— et (uo) —[—pur e (G5 + 37) | 5 (3.10
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We obtain in a similar manner conditions of continuity of the flow of the lateral com-

ponent of impulse, and the condition of conservation of the mass flow.

a +0 O F 510
e;t—(pv)*~—[pv1§_g-a§ =[—pur+8(5+5 )] —

S 4 oy 2 du\T*0 o
¢ (p+p”2)* [_p_p”2+8<?5j‘*§ax)}(_o'ﬁ (3.11)

9 o« g0 90 Lo g0 OF
€ _a‘{p - [P]r__o at "|" [pu](_o'l" & 5 ay (Pv)* - [Pv]t_o Ay =0
Equations of heat and reactant transfer can be dealt with in the same manner. Bound-
ary conditions for these will contain the integral of the function of emission of heat

(2] +oo
M — § Y dz = S wdt (3.12)
-8 ® —00
This integral represents the quantity of heat emitted per unit of time per unit of the
flame surface. For stationary conditions M = 1, while in the case of a non-stationary
curved flame front, parameter M defines the non-stationary rate of burning. Taking this
into consideration the conditions of conservation of flow of heat and the reactant, will

be expressed by ] * X0 O _
Bt (Pe) — [Pe](-o at
e 9970 3 4
= [—put+ 2 f%],o 8 5y (P20)* —[— P”‘“fi%]t R
Yo OC (3.13)

3 (0507 — IosI 5 =

e O0s F] %40
[ pus + 5p ax]u 8W(P”S)*—[—pvs E%%]t_o%—M

Linearizing the boundary conditions (3.10) to (3.13) for the case of small perturbations

we obtain

[»' + 00t + RU (20 — LA

()

=8 {[é %u; - {f— %Z*]_: - —597 (Ru')* — —g,- e'U)*— 7%. (RUv’)*}
Aoy —p 5] = e {3+ W~ R~ *}

l:p'U + R (u' — —%%—)]j: =g {— _(?t_(p,)* . _a% (Rv')*}
[RUe' +0'U6+ RO (u _%)]_: -

—ef[LOT°_ 0 pes 0,
5 %~ e — 2 0o — 2 reyl
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[RUS +PUS+RS(w — iC-)]

~of[ 5] - @) — 5 9 — 5 RS -

For further computation of the terms denoted by ( )* we shall have to use a definite
form of flame structure. We shall assume that the latter is of the form given by the
Zeldovich and Frank-Kamenetskii theory [13 and 14]. This theory assumes that the activa-
tion energy of the chemical combustion reaction is very great, and that the flame consists
of two zones, viz. the preheating zone {its width is of the order of &), and the comparatively
much narrower chemical reaction zone. In accordance with this we shall disreggrd the width
of the reaction zone, and assume that the reaction rate is determined only by the temper-
ature of combustion products leaving this zone (M = M (9,)).. Generally, the temperature §,
may differ from the adiabatic temperature of combustion under stationary conditions
(0, % 0 =1) see for example [15 and 16]. Structure of the flame front is defined by the
system of equations (2.1) which comprises the hydrodynamic, diffusion and thermal con-
ductivity equations. In the case of a curved flame front curvilinear orthogonal coordinates
originating at the flame front should be used, as the term ‘flame structure’ means the
parameter distribution within the flame front in the direction of the normal n to its surface.
We then substitute 1) = n / & for n. After this substitution, and because for the computa-
tion of the values of terms { )* it is sufficient to know the flame structure in the zero-order
approximation only, all terms of the order of & can be disregarded. It is easy to see that
because of this all derivatives with respect to time and to the coordinate collinear with
the flame front, will disappear. All Lamé coefficients will be equal to unity. For flame
fronts of small curvature, the direction of its normal will be collinear with the x-axis
with the approximation to the higher order terms. We can, therefore, assume that
n=nl/e=§E=(x—0)/e

Then, from equations (2.1), we obtain for the area outside the chemical reaction zone

kom0 Glomer o g

(3.15)
1 a8 2 1 dsy
(oot 5 5g) =0 g (—evmstgpgr) =0
where v, and v, are the components of the stream velocity, normal and tangent res-
pectively to the flame front. These are related to velocities u and v by

a=Poton =U+u =2,  o.=0+ UL (3.16)

The system of equations (3.15) must be supplemented by the equation of state (2.2).

The boundary conditions for the system of equations (3.15) will be: (1) conditions, at
infinity (for £+ £ oo the solutions should coincide with the values of parameters at the
flame surface obtained by Landau (formulas (2.6) and (2.8) for x = 0)); (2) conditions in
the reactioh zone. Here the conditions of continuity of the tangential velocity, temperature
and concentration must be fulfilled (conditions of conservation in this case will be ful-
filled automatically). With the above boundary conditions and use of linearizing procedure,
we obtain the solution of system (3.15) in the form

1-—@ 1 _ —
U.=t4 et U=g, V.=V, =0 (a.17
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P
8 —et O =1, S.=1—e §, =0
R=1[(1+2 %), R,=a

for stationary conditions, and

u!={4°+ 152 (47— 0D) (1 + oF) + HU) et} etvret, u,! = (B V) ehveet

v = i[Ao—(A°+B°+a(oC“— i-;aD>eg _ E_E_fDeaﬁ]eivﬂnt

v, = — i (B® + aw(?) etv+ot
P_" == {‘_ A® (ﬁ) -+ 1) + 1 ;‘Cl (__3_ - '1) [(AY— mD) (2 -+ gg) + Ho) ecg}ewﬂ,g
p+' —_ Bﬂ (a(l) — i) eiV'Hl)f’ p+' - (1 — a) Haefﬂ-i-ut (3- 18)

r

p’ = — T2 ((4° —oD) ok + H (1 + 122 0ot) ™ gt gt

6.7 = {[(4°— D) ok + H'] et} eiv+at, 0’ = Hogivrat

s =—(4°— oD)cLteslkgttrt, 5 '
for the perturbations.

Using the formulas (3.17) and (3.18), we can compute the values of the terms { )*
appearing in the boundary conditions (3.14), with the following resnlt

(p’)* = 1-::—?.—1_.(%..6._ ‘1) (Ao_.mD +H0) ei’l’(‘tﬂt

o g
(0)* = —— [(4°— oD) Ina + (1 — ) HO) ehvrot
(Ru')* = —i— {A°lna.— [/y(a) + Ina} (A° — @D) — HO In a}eiv+ut
’ . {1 0 )
(Rv')* = i {%ﬁ Ao__a(A +1B:~;—am0°) Iy (,0) + [I,(a, ) +1%E]D}3£vmt

(Ix(ﬂ)E§°—~jﬁL~ Ig(a,m)Ego-—mﬂ-t-——-——)

Ja/(l—a)4 et Ja/(1—a)te™

(ROY* = — ﬁ 11 (&) (A° — D) +HO In o] etv+ot

nk __ o _L ___1“ e 3 te~tdt
(Re')* = 12— I (0, ) (40 — @D) efvest (1=<a.m)5§ T )
P'U)* = -;- [y (@) (A° — @D) + HOln a]eivat
(0'6)* = -—2- {1—_3_"—&- [Ii (o) + lna] (4° — D) + (a: + i"%i In a) HJ} elvtot

(3.19)
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0 =it (bt = 2 i =) ¢
+ [ 12<0t,——L—”H°}eiU'““
(RUDY* =i — (47 + B a0C?) + 152 (1 — 1) e

(RGU’)*:i{—iaa!E;—AO 1iaﬂ1'7?]2(°" - i_1>(A°—{—B"—;—ocmC")——
’"]:_ srrla(e ?1>+1iah;a +%}D}ei”“"t
(RSv)* =i {MAO y - ctcL Iz( 1)‘40—12@[&(“’6)—_

T oL —{—1[2 ( ' 5L +1) -+ %’E +m[z(a, ﬁT)JD}eiy+mt

which completes the derivation of the boundary conditions at the flame surface in the

first-order approximation with respect to g.

4. We shall now determine the characteristic frequency of the problem. Having derived
solutions of equations (2.6), (2.8) and (2.10) which satisfy the boundary conditions (3.14),
we shall now equate the coefficients of the zero- and first-order approximations with respect
to &, to obtain two systems of homogeneous, linear algebraic equations. The first system
obtained by equating to zero the coefficients of the terms of the zero power is used to de-
termine the constants of the zero-order approximation

A (@—1)+ B'(aw 4 1)+ 200 — 122 o — 0

— A B — a4+ =2 =0

— A aB ol + (1 — a)oD — (1 — ) H = 0 @D

aB® + aC’— gD + afl* =0, —A° + @D =0

It is easily seen that from the last three equations it follows that #° =0, Thas, the
solution of zero-order approximation does not contain terms related to temperatare perturba-
tions downstream of the flame. This is understandable, as the phenomena which can cause
temperature perturbations there, i.e. the diffusion and thermal conductivity, are neglected.

Neglecting the fourth equation of {4.1) and assuming H ® =0, we arrive at the system
of equations obtained by Landau (in a somewhat different combination of equations). In
order to obtain a nontrivial solution, we equate the determinant of the system to zero, and
arrive at Landau's characteristic equation

(Q0)2 QO e ed—a) _g (Q° = aw®) 4.2)

o
+1+a 1¥a

We derive the expressions for the coefficients A%, B® and C° in terms of the perturba-
tion amplitude of the surface D, with the assumption that in this system @ = @° We obtain

1—a . 1—a (4.3)
A =0'D, B =gy D = (0" — i) D
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Now we shall try to solve the problem in the first-order approximation. FEquating

coefficient of €, we obtain

(@ — 1) AL 4 (a0® + 1) B! 4 2Ct — L2 2 Bl = %097 + Blaw’® + { }1 (4.4.1)

A1 — Bl — q@®C' = [1 — a0 — (@] C° + { } (4.4.2)
At B 4 a —(l—Q)H =1 —a) oD +{} (543
aBl + aCl + qH! = —a0®D + { }, (4.4.4)

— Al =D + { % (4.4.5)

A new notation was used in these equations: the right-hand side terms of the boundary
condition (3.14) were denoted for brevity by &{ };, where the lower index denotes the
equation number. Also, the characteristic frequency of the problem was used in the form
given by (1.3), (we also seek the first-order approximation with respect to & of the char-

acteristic frequency of this problem).

We note that H! is easily found from the system (4.4). From (4.4.3), (4.4.4) and (4.4.5)

we obtain

l= —{ la+{lat+1{}s (4.5)

We shall use the solution of zero-order approximation i.e. (4.3) for computing the
right-hand sides of the system (4.4) in terms of the flame front perturbation amplitude. We
obtain for the parameters ( }*

(p')* = (p7)* = (RO")* = (Rs')* = (p'U) * = (p’ ©)* = (p'S)*= 0

(Ru')* = m"lna Deivet (Ry')* =i (0® 4 1)“‘“ eiy ot
(RUVY = =i . % Dt (4.6)
(RSV')* = %[( +1)lna— 2 12( , _2.) 4 “;1 I (a, ﬁ)] Deiv+at
(ROV')* = — ;; [1 + a(l—mo_%ﬂln oc] Deiy+ot

and with the use of (4.6) for the right-hand sides of system (4.4) we have
1—a (O
{ h=—[2+5) T+ L md]p

{ htl—(@oopjcr=— L@, (), — o0 Ht

4.7

{ }4=_%[1 + =5 @+ Oina]D + 2
{ h=3[@+Dh 1_a“’T°12(a, )+t fa(o gop) |0 —

while for H* we have
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1= — {1l 22 nhp = — KD (+.8)

where for brevity we use the following notation (4.9)

[ =t 4 e — =g Lo )] T b=[4 1w, )+ Ina]

and utilise the dependence of the reaction rate on temperature, which is

M =20, = ezH' exp (iy + o)

{The terms within the parentheses [ 10 b become zere for the Lewis number [, = 1).

We rearrange our equations so as to present them in a form similar to that of the
Landau system [1 and 2]. For this we have to perform the following operations

—_ 1 1
— 2 (441) 42120 (445), —(44.2), ~(4.4.3)— 5 (445), —(44.5)
The numbers in parentheses correspond to the equations of the system (4.4). Equa-
tion (4.4.4) is omitted, since it was used to obtain H!. We have

(m°+1)Al+(am0_1)31+{r[m0— agi_“ ]+1—°‘( — %)

+a) a

+(—‘“;’)izna-‘“°‘(1-_2z)1da 0

A’+B’+am°C‘——{ctm°t[m"w 1—o }4—"’”“"’“’1:10‘}1):0 (4.10)

a{l+ a) s

Bl+01+{m°r+%«+-@9’l’;_?_lna+(1 —->A}D 0

a)o

Al—l—{m“r —}—%[1 +°;oj'allna]+(1 —z)K}DzO

Here, as in the case of the solution of zero-order approximation, the determinant of
system (4.10) must be zero, for a nontrivial solution to exist. This provides the condition
for the determination of cormrection of the characteristic frequency 7 of our problem.

We find
I . 14042001 Ina
T T T ?(1+1—a>+
1 Q_o O (4.11)
+rom C+e—20 20 W+ 200 1)

If (4.11) is extrapolated into the region of wavelengths perturbation for which w =0,
then the parameter 7 becomes equal to the critical Reynolds number, 7= Npo» taken with
respect to the perturbation wavelength, or more precisely with respect to the wave number
k= 27T/A.

5. Formula (4.11) derived in the previous section shows the influence of individual
dissipative effects on the flame stability.

The first term of this formula represents the effect of viscosity.

Using for {1 ° the expression
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Q0= (—a+ YVatot—a’)/(14a) 5.1

it is easy to prove (see (4.2)) that this term is always positive, therefore, viscosity

s always a stabilising effect on the flame. This is in agreement with conclusions arrived

at in [5 and 6], but contradicts those of [4 and 8] in which a physically odd, unstabilising
effect of viscosity is shown. The critical Reynolds number, as determined by viscosity

effects, is Neg =(1 —a)/ (1 —u— Q9 (5.2)
and is not high. The dependence of Ny on a is shown in Fig. 2. For real flames a = 0.1
to 0.2, and NR! = 1.3 to 1.5,

The second term of the formula (4.11) represents the effect of thermal conductivity.
The critical Peclet number corresponding to this effect only is

1404200 ing
[y = 6Npe = —“"“1’}:._&—}:_ Qo (1 + 1——05) (5.3)

\/i’\\ /Z
" Z

g
-
&
- g
FIG, 2 FIG. 3

The dependence of IL on ais also shown on the fig. 2. Thermal conductivity has
also only a stabilising effect on the flame. For the real flames the Peclet number is

I, =3.

The last term of the formula {4.11) represent the effect of the relationship between
diffusion and thermal conductivity on the flame stability. The critical Peclet number due
to this effect is

Oy =t 2 tto—29{0 L+ gl b (5.4)

1t is dependent on two parameters, viz. the degree of thermal expansion L and the
Lewis number L, and in this manner correlates the effects of diffusion and thermal con~
ductivity.

It should be emphasised, however, that here the role of the Lewis number [, is some~
what different than in the case of purely diffusive-thermal stability [15 and 16]. In the
latter, stability is dependent on the redistribution of heat and matter between the hills and
dales of the flame front by means of transverse thermal diffusion and conduction flows,
origineting at the flame curvatures. In our case the transverse, {low of heat and matter is
convective; we analyse the flame front in the vicinity of the boundary layer, diffusion and
thermal conductivity are considered in the direction normal to the front only (as quasi-
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stationary changes of the concentration and temperature profiles), while the tangential
transfer of heat and matter along the front is brought about by the oscillations of the
tangential velocity. Therefore the diffusive thermal phenomena, in the sense given in [15
and 16], would only appear in the second-order approximation with respect to € of the
Landau solution. The part which the Lewis number plays in our problem lies in the fact,
that the width of the diffusion and thermal fronts differ from each other, hence, the effect-
ive values of concentration and temperature, trasported by transverse pulsations, are also
different. Fig. 1 shows how the streamlines become distorted, and how the y-components
of velocity change their sign within the flame front. Depending on the degree of thermal
expansion O, the transport phenomena may predominate either downstream, or upstream

of the flame front, and the resulting effect will be different, even though relationship
between the diffusion and thermal conductivity remains the same.

This can be easily proved. The Peclet number for @ » 0 (considerable thermal
expansion) is
g — (1—22) (L — 1) /L~ —2z2(L — 1)/ L (5.5)
while for & - 1 (no thermal expansion), we have
Nyws =201 — )L —DW/LLA1)=2z2(L—-1)/L{EL+1) (5.6)
from which we see that sign of L — 1 remains the same, when the sign of the Peclet number
changes.

If the Lewis number is close to unity, then |L — 1| <1, and (5.4) can be replaced
with the simpler equation

My~ — 2z T!.iﬂ,“ _®ta jl(a)](L_i):—ZzG @) (L—1) .1

o — QO 1—a

Function G (@) is shown on fig. 2. It becomes negative for very small a, but this does
not occur in practice.

In the general case formula (5.4) should be used. In order to facilitate computations
with the aid of this formula curves of [a / (1 — a)] (e, m) for several values of the
parameter m are given on fig. 3.

Thus, the effect of transport phenomena is that of stabilising small perturbations. The
critical Reynolds number 7 obtained by the extrapolation of the linear correction does not
greatly differ from unity. For example, for 2 = 0.2, 2 =10, =1, and L =1.2, we have
T=T.

In concluding we wish to express out thanks to G.I. Bareblatt and Ia.B. Zel'dovich
for the formulation of the problem and its discussion and to 0.1, Leipunovski and
V.I. lagodkin for their valuable remarks
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